z-logo
open-access-imgOpen Access
ВДОСКОНАЛЕННЯ МЕТОДИКИ РОЗРАХУНКУ ПРОГИНУ ОДНОСХИЛОЇ БАЛКИ ЗА ЗМІННОЇ ЖОРСТКОСТІ ЗА ДОВЖИНОЮ
Author(s) -
О.Є. Янін
Publication year - 2021
Publication title -
tavrìjsʹkij naukovij vìsnik. tehnìčnì nauki
Language(s) - Ukrainian
Resource type - Journals
eISSN - 2786-4596
pISSN - 2786-4588
DOI - 10.32851/tnv-tech.2021.5.9
Subject(s) - computer science , engineering
У статті наведено рішення теоретичної задачі визначення прогину односхилої балки за лінійної зміни жорсткості вздовж прольоту. Актуальність розв’язання такої задачі зумовлена необхідністю забезпечення умов нормальної експлуатації та дотримання вимог техніки безпеки. Вдосконалення методу визначення максимальних прогинів балочних елементів базується на тому, що, згідно з нормами проєктування залізобетонної балки, прогин треба обраховувати за загальними правилами будівельної механіки. Розглядається випадок, коли напруження в конструкції набагато менше за граничні значення. Тоді пластичний складник деформації порівняно малий. Об’єктом теоретичного дослідження є однопрольотна шарнірно обперта односхила балка прямокутного поперечного перерізу, яка завантажена рівномірно розподіленим лінійним навантаженням. Більшість сталевих і залізобетонних балок мають двотавровий поперечний переріз, для якого осьовий момент інерції у площині згину приблизно пропорційний кубу висоти. Тому для спрощення взято прямокутний переріз. Виходячи з геометричної схеми балки, отримано лінійну залежність між координатою вздовж прольоту та її висотою. На цій підставі складена функція осьового моменту інерції поперечного перерізу. Для отримання аналітичної формули прогинів і кутів повороту балки за довжиною прольоту виконано інтегрування диференційного рівняння зігнутої осі. Згинальний момент у перерізі балки від заданого лінійного навантаження представлений у вигляді квадратичної залежності. Послідовне інтегрування диференційного рівняння дозволило отримати функції кута повороту і прогину. Постійні інтегрування виходять з того, що прогини на лівій і правій опорах дорівнюють нулю. Для практичного підтвердження правильності отриманого результату для прогинів розглядався випадок, коли ухил балки дорівнює нулю. Аналіз формули деформацій балки показав, що треба розкривати математичну невизначеність за допомогою правила Лопіталя. Таке завдання пов’язане з певними математичними труднощами і вирішувалося за допомогою комп’ютерного середовища MathCAD. Задача знаходження прогинів і кутів повороту балки була розв’язана за контрольних вихідних даних. За допомогою комп’ютерного середовища MathCAD було безпосередньо отримане графічне рішення диференційного рівняння зігнутої осі, а також побудовані графіки функцій прогинів і кутів повороту. Аналіз цих графіків показав, що максимальний прогин і нульовий кут повороту мають одну абсцису, що відповідає теоретичним передумовам. Доведено, що балка має максимальний прогин не посередині прольоту, а ближче до лівої опори, де її висота менша.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here