z-logo
open-access-imgOpen Access
Genetic analysis on three South Indian sympatric hipposiderid bats (Chiroptera, Hipposideridae)
Author(s) -
C. Kanagaraj,
G. Marimuthu,
Koilmani Emmanuvel Rajan
Publication year - 2010
Publication title -
animal biodiversity and conservation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.39
H-Index - 34
eISSN - 2014-928X
pISSN - 1578-665X
DOI - 10.32800/abc.2010.33.0187
Subject(s) - biology , phylogenetic tree , sympatric speciation , nucleotide diversity , genetic divergence , evolutionary biology , maximum parsimony , genetic diversity , population , haplotype , mitochondrial dna , zoology , genetics , clade , gene , genotype , demography , sociology
In mitochondrial DNA, variations in the sequence of 16S rRNA region were analyzed to infer the genetic relationship and population history of three sympatric hipposiderid bats, Hipposideros speoris, H. fulvus and H. ater. Based on the DNA sequence data, we observed relatively lower haplotype and higher nucleotide diversity in H. speoris than in the other two species. The pairwise comparisons of the genetic divergence inferred a genetic relationship between the three hipposiderid bats. We used haplotype sequences to construct a phylogenetic tree. Maximum parsimony and Bayesian inference analysis generated a tree with similar topology. H. fulvus and H. ater formed one cluster and H. speoris formed another cluster. Analysis of the demographic history of populations using Jajima’s D test revealed past changes in populations. Comparison of the observed distribution of pairwise differences in the nucleotides with expected sudden expansion model accepts for H. fulvus and H. ater but not for H. speoris populations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom