z-logo
open-access-imgOpen Access
Optimization of advanced greenhouse substrates based on physicochemical characterization, numerical simulations, and tomato growth experiments
Author(s) -
Markus Tuller,
Asher BarTal,
Hadar Heller,
Michal Amichai
Publication year - 2014
Language(s) - English
Resource type - Reports
DOI - 10.32747/2014.7600009.bard
Subject(s) - fertigation , greenhouse , environmental science , agricultural engineering , population , agriculture , irrigation , environmental engineering , agronomy , engineering , biology , ecology , demography , sociology
Over the last decade there has been a dramatic shift in global agricultural practice. The increase in human population, especially in underdeveloped arid and semiarid regions of the world, poses unprecedented challenges to production of an adequate and economically feasible food supply to undernourished populations. Furthermore, the increased living standard in many industrial countries has created a strong demand for high-quality, out-of-season vegetables and fruits as well as for ornamentals such as cut and potted flowers and bedding plants. As a response to these imminent challenges and demands and because of a ban on methyl bromide fumigation of horticultural field soils, soilless greenhouse production systems are regaining increased worldwide attention. Though there is considerable recent empirical and theoretical research devoted to specific issues related to control and management of soilless culture production systems, a comprehensive approach that quantitatively considers all relevant physicochemical processes within the growth substrates is lacking. Moreover, it is common practice to treat soilless growth systems as static, ignoring dynamic changes of important physicochemical and hydraulic properties due to root and microbial growth that require adaptation of management practices throughout the growth period. To overcome these shortcomings, the objectives of this project were to apply thorough physicochemical characterization of commonly used greenhouse substrates in conjunction with state-of-the-art numerical modeling (HYDRUS-3D, PARSWMS) to not only optimize management practices (i.e., irrigation frequency and rates, fertigation, container size and geometry, etc.), but to also “engineer” optimal substrates by mixing organic (e.g., coconut coir) and inorganic (e.g., perlite, pumice, etc.) base substrates and modifying relevant parameters such as the particle (aggregate) size distribution. To evaluate the proposed approach under commercial production conditions, characterization and modeling efforts were accompanied by greenhouse experiments with tomatoes. The project not only yielded novel insights regarding favorable physicochemical properties of advanced greenhouse substrates, but also provided critically needed tools for control and management of containerized soilless production systems to provide a stress-free rhizosphere environment for optimal yields, while conserving valuable production resources. Numerical modeling results provided a more scientifically sound basis for the design of commercial greenhouse production trials and selection of adequate plant-specific substrates, thereby alleviating the risk of costly mistrials.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here