z-logo
open-access-imgOpen Access
Effect of Combined Solarization and in Solum Compost Decomposition on Soil Health
Author(s) -
Jean S. VanderGheynst,
M. Raviv,
J.J. Stapleton,
Dror Minz
Publication year - 2013
Language(s) - English
Resource type - Reports
DOI - 10.32747/2013.7594388.bard
Subject(s) - soil solarization , solarisation , compost , environmental science , soil health , agronomy , amendment , soil respiration , plastic film , soil water , horticulture , soil organic matter , biology , chemistry , soil science , organic chemistry , layer (electronics) , political science , law
In soil solarization, moist soil is covered with a transparent plastic film, resulting in passive solar heating which inactivates soil-borne pathogen/weed propagules. Although solarization is an effective alternative to soil fumigation and chemical pesticide application, it is not widely used due to its long duration, which coincides with the growing season of some crops, thereby causing a loss of income. The basis of this project was that solarization of amended soil would be utilized more widely if growers could adopt the practice without losing production. In this research we examined three factors expected to contribute to greater utilization of solarization: 1) investigation of techniques that increase soil temperature, thereby reducing the time required for solarization; 2) development and validation of predictive soil heating models to enable informed decisions regarding soil and solarization management that accommodate the crop production cycle, and 3) elucidation of the contributions of microbial activity and microbial community structure to soil heating during solarization. Laboratory studies and a field trial were performed to determine heat generation in soil amended with compost during solarization. Respiration was measured in amended soil samples prior to and following solarization as a function of soil depth. Additionally, phytotoxicity was estimated through measurement of germination and early growth of lettuce seedlings in greenhouse assays, and samples were subjected to 16S ribosomal RNA gene sequencing to characterize microbial communities. Amendment of soil with 10% (g/g) compost containing 16.9 mg CO2/g dry weight organic carbon resulted in soil temperatures that were 2oC to 4oC higher than soil alone. Approximately 85% of total organic carbon within the amended soil was exhausted during 22 days of solarization. There was no significant difference in residual respiration with soil depth down to 17.4 cm. Although freshly amended soil proved highly inhibitory to lettuce seed germination and seedling growth, phytotoxicity was not detected in solarized amended soil after 22 days of field solarization. The sequencing data obtained from field samples revealed similar microbial species richness and evenness in both solarized amended and non-amended soil. However, amendment led to enrichment of a community different from that of non-amended soil after solarization. Moreover, community structure varied by soil depth in solarized soil. Coupled with temperature data from soil during solarization, community data highlighted how thermal gradients in soil influence community structure and indicated microorganisms that may contribute to increased soil heating during solarization. Reliable predictive tools are necessary to characterize the solarization process and to minimize the opportunity cost incurred by farmers due to growing season abbreviation, however, current models do not accurately predict temperatures for soils with internal heat generation associated with the microbial breakdown of the soil amendment. To address the need for a more robust model, a first-order source term was developed to model the internal heat source during amended soil solarization. This source term was then incorporated into an existing “soil only” model and validated against data collected from amended soil field trials. The expanded model outperformed both the existing stable-soil model and a constant source term model, predicting daily peak temperatures to within 0.1°C during the critical first week of solarization. Overall the results suggest that amendment of soil with compost prior to solarization may be of value in agricultural soil disinfestations operations, however additional work is needed to determine the effects of soil type and organic matter source on efficacy. Furthermore, models can be developed to predict soil temperature during solarization, however, additional work is needed to couple heat transfer models with pathogen and weed inactivation models to better estimate solarization duration necessary for disinfestation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here