z-logo
open-access-imgOpen Access
Use of Oocyte and Embryo Survival Factors to Enhance Fertility of Heat-stressed Dairy Cattle
Author(s) -
Peter J. Hansen,
Zvi Roth
Publication year - 2011
Language(s) - English
Resource type - Reports
DOI - 10.32747/2011.7697105.bard
Subject(s) - insemination , oocyte , fertility , andrology , zoology , embryo , embryo transfer , biology , hsp70 , pregnancy , artificial insemination , heat stress , dairy cattle , estrous cycle , endocrinology , heat shock protein , medicine , sperm , genetics , population , environmental health , gene
The overall goal was to identify survival factors that can improve pregnancy success following insemination or embryo transfer in lactating dairy cows exposed to heat stress. First, we demonstrated that oocytes are actually damaged by elevated temperature in the summer. Then we tested two thermoprotective molecules for their effect on oocyte damage caused by heat shock. One molecule, ceramide was not thermoprptective. Another, insulin-like growth factor-1 (IGF) reduced the effects of heat shock on oocyte apoptosis and oocyte cleavage when added during maturation. We also used lactating cows exposed to heat stress to determine whether bovine somatotropin (bST), which increases IGF1 levels in vivo, would improve fertility in summer. Cows treated with bST received a single injection at 3 days before insemination. Controls received no additional treatment. Treatment with bST did not significantly increase the proportion of inseminated cows diagnosed pregnant although it was numerically greater for the bST group (24.2% vs 17.8%, 124–132 cows per group). There was a tendency (p =0.10) for a smaller percent of control cows to have high plasma progesterone concentrations (≥ 1 ng/ml) at Day 7 after insemination than for bST-treated cows (72.6 vs 81.1%). When only cows that were successfully synchronized were considered, the magnitude of the absolute difference in the percentage of inseminated cows that were diagnosed pregnant between bST and control cows was reduced (24.8 vs 22.4% pregnant for bST and control). Results failed to indicate a beneficial effect of bST treatment on fertility of lactating dairy cows. In another experiment, we found a tendency for addition of IGF1 to embryo culture medium to improve embryonic survival after embryo transfer when the experiment was done during heat stress but not when the experiment was done in the absence of heat stress. Another molecule tested, granulocyte-macrophage colony-stimulating factor (GM-CSF; also called colony-stimulating factor-2), improved embryonic survival in the absence of heat stress. We also examined whether heat shock affects the sperm cell. There was no effect of heat shock on sperm apoptosis (programmed cell death) or on sperm fertilizing ability. Therefore, effects of heat shock on sperm function after ejaculation if minimal. However, there were seasonal changes in sperm characteristics that indicates that some of the decrease in dairy cow fertility during the summer in Israel is due to using semen of inferior quality. Semen was collected from five representative bulls throughout the summer (August and September) and winter (December and January). There were seasonal differences in ion concentration in seminal plasma and in the mRNA for various ion channels known to be involved in acrosome reactions. Furthermore, the proportion of sperm cells with damaged acrosomes was higher in post-thaw semen collected in the summer than in its counterpart collected in winter (54.2 ± 3.5% vs. 51.4 ± 1.9%, respectively; P < 0.08Further examination is required to determine whether such alterations are involved in the low summer fertility of dairy cows.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here