z-logo
open-access-imgOpen Access
Novel Approach to Mycotoxin Detoxification in Farm Animals Using Probiotics Added to Feed Stuffs
Author(s) -
Roni Shapira,
Judith M. Grizzle,
N. Paster,
Mark Pines,
Chamindrani Mendis-Handagama
Publication year - 2010
Language(s) - English
Resource type - Reports
DOI - 10.32747/2010.7592115.bard
Subject(s) - trichothecene , detoxification (alternative medicine) , biology , probiotic , lactobacillus casei , bacteria , microbiology and biotechnology , mycotoxin , reporter gene , cloning vector , lactic acid , food science , biochemistry , gene , vector (molecular biology) , gene expression , recombinant dna , genetics , medicine , alternative medicine , pathology
T-2 toxin, a toxic product belongs to the trichothecene mycotoxins, attracts major interest because of its severe detrimental effects on the health of human and farm animals. The occurrence of trichothecenes contamination is global and they are very resistant to physical or chemical detoxification techniques. Trichothecenes are absorbed in the small intestine into the blood stream. The hypothesis of this project was to develop a protecting system using probiotic bacteria that will express trichothecene 3-O-acetyltransferase (Tri101) that convert T-2 to a less toxic intermediate to reduce ingested levels in-situ. The major obstacle that we had faced during the project is the absence of stable and efficient expression vectors in probiotics. Most of the project period was invested to screen and isolate strong promoter to express high amounts of the detoxify enzyme on one hand and to stabilize the expression vector on the other hand. In order to estimate the detoxification capacity of the isolated promoters we had developed two very sensitive bioassays.The first system was based on Saccharomyces cerevisiae cells expressing the green fluorescent protein (GFP). Human liver cells proliferation was used as the second bioassay system.Using both systems we were able to prove actual detoxification on living cells by probiotic bacteria expressing Tri101. The first step was the isolation of already discovered strong promoters from lactic acid bacteria, cloning them downstream the Tri101 gene and transformed vectors to E. coli, a lactic acid bacteria strain Lactococcuslactis MG1363, and a probiotic strain of Lactobacillus casei. All plasmid constructs transformed to L. casei were unstable. The promoter designated lacA found to be the most efficient in reducing T-2 from the growth media of E. coli and L. lactis. A prompter library was generated from L. casei in order to isolate authentic probiotic promoters. Seven promoters were isolated, cloned downstream Tri101, transformed to bacteria and their detoxification capability was compared. One of those prompters, designated P201 showed a relatively high efficiency in detoxification. Sequence analysis of the promoter region of P201 and another promoter, P41, revealed the consensus region recognized by the sigma factor. We further attempted to isolate an inducible, strong promoter by comparing the protein profiles of L. casei grown in the presence of 0.3% bile salt (mimicking intestine conditions). Six spots that were consistently overexpressed in the presence of bile salts were isolated and identified. Their promoter reigns are now under investigation and characterization.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here