
Integration of phosphorus and chloroplast mRNA metabolism through regulated ribonucleases
Author(s) -
Gadi Schuster,
David B. Stern
Publication year - 2008
Language(s) - English
Resource type - Reports
DOI - 10.32747/2008.7695859.bard
Subject(s) - exoribonuclease , biology , chloroplast , plastid , gene , gene expression , microbiology and biotechnology , chloroplast dna , rna , genetics , biochemistry , rnase p
New potential for engineering chloroplasts to express novel traits has stimulated research into relevant techniques and genetic processes, including plastid transformation and gene regulation. This proposal continued our long time BARD-funded collaboration research into mechanisms that influence chloroplast RNA accumulation, and thus gene expression. Previous work on cpRNA catabolism has elucidated a pathway initiated by endonucleolytic cleavage, followed by polyadenylation and exonucleolytic degradation. A major player in this process is the nucleus-encoded exoribonuclease/polymerasepolynucleotidephoshorylase (PNPase). Biochemical characterization of PNPase has revealed a modular structure that controls its RNA synthesis and degradation activities, which in turn are responsive to the phosphate (P) concentration. However, the in vivo roles and regulation of these opposing activities are poorly understood. The objectives of this project were to define how PNPase is controlled by P and nucleotides, using in vitro assays; To make use of both null and site-directed mutations in the PNPgene to study why PNPase appears to be required for photosynthesis; and to analyze plants defective in P sensing for effects on chloroplast gene expression, to address one aspect of how adaptation is integrated throughout the organism. Our new data show that P deprivation reduces cpRNA decay rates in vivo in a PNPasedependent manner, suggesting that PNPase is part of an organismal P limitation response chain that includes the chloroplast. As an essential component of macromolecules, P availability often limits plant growth, and particularly impacts photosynthesis. Although plants have evolved sophisticated scavenging mechanisms these have yet to be exploited, hence P is the most important fertilizer input for crop plants. cpRNA metabolism was found to be regulated by P concentrations through a global sensing pathway in which PNPase is a central player. In addition several additional discoveries were revealed during the course of this research program. The human mitochondria PNPase was explored and a possible role in maintaining mitochondria homeostasis was outlined. As polyadenylation was found to be a common mechanism that is present in almost all organisms, the few examples of organisms that metabolize RNA with no polyadenylation were analyzed and described. Our experiment shaded new insights into how nutrient stress signals affect yield by influencing photosynthesis and other chloroplast processes, suggesting strategies for improving agriculturally-important plants or plants with novel introduced traits. Our studies illuminated the poorly understood linkage of chloroplast gene expression to environmental influences other than light quality and quantity. Finely, our finding significantly advanced the knowledge about polyadenylation of RNA, the evolution of this process and its function in different organisms including bacteria, archaea, chloroplasts, mitochondria and the eukaryotic cell. These new insights into chloroplast gene regulation will ultimately support plant improvement for agriculture