
Regulation of plant development by polycomb group proteins
Author(s) -
Nir Ohad,
Robert L. Fischer
Publication year - 2008
Language(s) - English
Resource type - Reports
DOI - 10.32747/2008.7695858.bard
Subject(s) - biology , polycomb group proteins , genomic imprinting , epigenetics , chromatin , gene , arabidopsis , dna methylation , genetics , gene silencing , histone , gametophyte , regulation of gene expression , endosperm , methylation , gene expression , microbiology and biotechnology , repressor , botany , mutant , pollen
Our genetic and molecular studies have indicated that FIE a WD-repeat Polycomb group (PcG) protein takes part in multi-component protein complexes. We have shown that FIE PcG protein represses inappropriate programs of development during the reproductive and vegetative phases of the Arabidopsis life cycle. Moreover, we have shown that FIE represses the expression of key regulatory genes that promote flowering (AG and LFY), embryogenesis (LEC1), and shoot formation (KNAT1). These results suggest that the FIE PcG protein participates in the formation of distinct PcG complexes that repress inappropriate gene expression at different stages of plant development. PcG complexes modulate chromatin compactness by modifying histones and thereby regulate gene expression and imprinting. The main goals of our original project were to elucidate the biological functions of PcG proteins, and to understand the molecular mechanisms used by FIE PcG complexes to repress the expression of its gene targets. Our results show that the PcG complex acts within the central cell of the female gametophyte to maintain silencing of MEA paternal allele. Further more we uncovered a novel example of self-imprinting mechanism by the PgG complex. Based on results obtained in the cures of our research program we extended our proposed goals and elucidated the role of DME in regulating plant gene imprinting. We discovered that in addition to MEA,DME also imprints two other genes, FWA and FIS2. Activation of FWA and FIS2 coincides with a reduction in 5-methylcytosine in their respective promoters. Since endosperm is a terminally differentiated tissue, the methylation status in the FWA and FIS2 promoters does not need to be reestablished in the following generation. We proposed a “One-Way Control” model to highlight differences between plant and animal genomic imprinting. Thus we conclude that DEMETER is a master regulator of plant gene imprinting. Future studies of DME function will elucidate its role in processes and disease where DNA methylation has a key regulatory role both in plants and animals. Such information will provide valuable insight into developing novel strategies to control and improve agricultural traits and overcome particular human diseases.