
Effects of root zone temperature, oxygen concentration, and moisture content on actual vs. potential growth of greenhouse crops
Author(s) -
J. Heinrich Lieth,
M. Raviv,
David W. Burger
Publication year - 2006
Language(s) - English
Resource type - Reports
DOI - 10.32747/2006.7586547.bard
Subject(s) - rhizosphere , greenhouse , environmental science , dns root zone , water content , biomass (ecology) , production (economics) , simulation modeling , work (physics) , crop , agricultural engineering , agronomy , soil water , mathematics , soil science , biology , engineering , mechanical engineering , genetics , geotechnical engineering , macroeconomics , mathematical economics , bacteria , economics
Soilless crop production in protected cultivation requires optimization of many environmental and plant variables. Variables of the root zone (rhizosphere) have always been difficult to characterize but have been studied extensively. In soilless production the opportunity exists to optimize these variables in relation to crop production. The project objectives were to model the relationship between biomass production and the rhizosphere variables: temperature, dissolved oxygen concentration and water availability by characterizing potential growth and how this translates to actual growth. As part of this we sought to improve of our understanding of root growth and rhizosphere processes by generating data on the effect of rhizosphere water status, temperature and dissolved oxygen on root growth, modeling potential and actual growth and by developing and calibrating models for various physical and chemical properties in soilless production systems. In particular we sought to use calorimetry to identify potential growth of the plants in relation to these rhizosphere variables. While we did experimental work on various crops, our main model system for the mathematical modeling work was greenhouse cut-flower rose production in soil-less cultivation. In support of this, our objective was the development of a Rose crop model. Specific to this project we sought to create submodels for the rhizosphere processes, integrate these into the rose crop simulation model which we had begun developing prior to the start of this project. We also sought to verify and validate any such models and where feasible create tools that growers could be used for production management. We made significant progress with regard to the use of microcalorimetry. At both locations (Israel and US) we demonstrated that specific growth rate for root and flower stem biomass production were sensitive to dissolved oxygen. Our work also identified that it is possible to identify optimal potential growth scenarios and that for greenhouse-grown rose the optimal root zone temperature for potential growth is around 17 C (substantially lower than is common in commercial greenhouses) while flower production growth potential was indifferent to a range as wide as 17-26C in the root zone. We had several set-backs that highlighted to us the fact that work needs to be done to identify when microcalorimetric research relates to instantaneous plant responses to the environment and when it relates to plant acclimation. One outcome of this research has been our determination that irrigation technology in soilless production systems needs to explicitly include optimization of oxygen in the root zone. Simply structuring the root zone to be “well aerated” is not the most optimal approach, but rather a minimum level. Our future work will focus on implementing direct control over dissolved oxygen in the root zone of soilless production systems.