z-logo
open-access-imgOpen Access
Determination of Allele Frequencies for Quantitative Trait Loci in Commercial Animal Populations
Author(s) -
I Weller Joel,
A Lewin Harris,
Ron Maymon
Publication year - 2005
Language(s) - English
Resource type - Reports
DOI - 10.32747/2005.7586473.bard
Subject(s) - allele , biology , genetics , population , quantitative trait locus , daughter , microsatellite , allele frequency , trait , linkage (software) , genetic linkage , gene , evolutionary biology , demography , sociology , computer science , programming language
Individual loci affecting economic traits in dairy cattle (ETL) have been detected via linkage to genetic markers by application of the granddaughter design in the US population and the daughter design in the Israeli population. From these analyses it is not possible to determine allelic frequencies in the population at large, or whether the same alleles are segregating in different families. We proposed to answer this question by application of the "modified granddaughter design", in which granddaughters with a common maternal grandsire are both genotyped and analyzed for the economic traits. The objectives of the proposal were: 1) to fine map three segregating ETL previously detected by a daughter design analysis of the Israeli dairy cattle population; 2) to determine the effects of ETL alleles in different families relative to the population mean; 3) for each ETL, to determine the number of alleles and allele frequencies. The ETL on Bostaurusautosome (BT A) 6 chiefly affecting protein concentration was localized to a 4 cM chromosomal segment centered on the microsatellite BM143 by the daughter design. The modified granddaughter design was applied to a single family. The frequency of the allele increasing protein percent was estimated at 0.63+0.06. The hypothesis of equal allelic frequencies was rejected at p<0.05. Segregation of this ETL in the Israeli population was confirmed. The genes IBSP, SPP1, and LAP3 located adjacent to BM143 in the whole genome cattle- human comparative map were used as anchors for the human genome sequence and bovine BAC clones. Fifteen genes within 2 cM upstream of BM143 were located in the orthologous syntenic groups on HSA4q22 and HSA4p15. Only a single gene, SLIT2, was located within 2 cM downstream of BM143 in the orthologous HSA4p15 region. The order of these genes, as derived from physical mapping of BAC end sequences, was identical to the order within the orthologous syntenic groups on HSA4: FAM13A1, HERC3. CEB1, FLJ20637, PP2C-like, ABCG2, PKD2. SPP, MEP, IBSP, LAP3, EG1. KIAA1276, HCAPG, MLR1, BM143, and SLIT2. Four hundred and twenty AI bulls with genetic evaluations were genotyped for 12 SNPs identified in 10 of these genes, and for BM143. Seven SNPs displayed highly significant linkage disequilibrium effects on protein percentage (P<0.000l) with the greatest effect for SPP1. None of SNP genotypes for two sires heterozygous for the ETL, and six sires homozygous for the ETL completely corresponded to the causative mutation. The expression of SPP 1 and ABCG2 in the mammary gland corresponded to the lactation curve, as determined by microarray and QPCR assays, but not in the liver. Anti-sense SPP1 transgenic mice displayed abnormal mammary gland differentiation and milk secretion. Thus SPP 1 is a prime candidate gene for this ETL. We confirmed that DGAT1 is the ETL segregating on BTA 14 that chiefly effects fat concentration, and that the polymorphism is due to a missense mutation in an exon. Four hundred Israeli Holstein bulls were genotyped for this polymorphism, and the change in allelic frequency over the last 20 years was monitored.   

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here