
Molecular Analysis of Cellulosome Organization in Ruminococcus Albus and Fibrobacter Intestinalis for Optimization of Fiber Digestibility in Ruminants
Author(s) -
Mark Morrison,
J. Miron,
Edward A. Bayer,
Raphael Lamed
Publication year - 2004
Language(s) - English
Resource type - Reports
DOI - 10.32747/2004.7586475.bard
Subject(s) - ruminococcus , fibrobacter succinogenes , cellulosome , biology , rumen , biochemistry , bacteria , cellulase , glycoside hydrolase , cellulose , enzyme , food science , genetics , clostridium thermocellum , fermentation
Improving plant cell wall (fiber) degradation remains one of the highest priority research goals for all ruminant enterprises dependent on forages, hay, silage, or other fibrous byproducts as energy sources, because it governs the provision of energy-yielding nutrients to the host animal. Although the predominant species of microbes responsible for ruminal fiber degradation are culturable, the enzymology and genetics underpinning the process are poorly defined. In that context, there were two broad objectives for this proposal. The first objective was to identify the key cellulosomal components in Ruminococcus albus and to characterize their structural features as well as regulation of their expression, in response to polysaccharides and (or) P AA/PPA. The second objective was to evaluate the similarities in the structure and architecture of cellulosomal components between R. albus and other ruminal and non-ruminal cellulolytic bacteria. The cooperation among the investigators resulted in the identification of two glycoside hydrolases rate-limiting to cellulose degradation by Ruminococcus albus (Cel48A and CeI9B) and our demonstration that these enzymes possess a novel modular architecture specific to this bacterium (Devillard et al. 2004). We have now shown that the novel X-domains in Cel48A and Cel9B represent a new type of carbohydrate binding module, and the enzymes are not part of a ceiluiosome-like complex (CBM37, Xu et al. 2004). Both Cel48A and Cel9B are conditionally expressed in response to P AA/PPA, explaining why cellulose degradation in this bacterium is affected by the availability of these compounds, but additional studies have shown for the first time that neither PAA nor PPA influence xylan degradation by R. albus (Reveneau et al. 2003). Additionally, the R. albus genome sequencing project, led by the PI. Morrison, has supported our identification of many dockerin containing proteins. However, the identification of gene(s) encoding a scaffoldin has been more elusive, and recombinant proteins encoding candidate cohesin modules are now being used in Israel to verify the existence of dockerin-cohesin interactions and cellulosome production by R. albus. The Israeli partners have also conducted virtually all of the studies specific to the second Objective of the proposal. Comparative blotting studies have been conducted using specific antibodies prepare against purified recombinant cohesins and X-domains, derived from cellulosomal scaffoldins of R. flavefaciens 17, a Clostridium thermocellum mutant-preabsorbed antibody preparation, or against CbpC (fimbrial protein) of R. albus 8. The data also suggest that additional cellulolytic bacteria including Fibrobacter succinogenes S85, F. intestinalis DR7 and Butyrivibrio fibrisolvens Dl may also employ cellulosomal modules similar to those of R. flavefaciens 17. Collectively, our work during the grant period has shown that R. albus and other ruminal bacteria employ several novel mechanisms for their adhesion to plant surfaces, and produce both cellulosomal and non-cellulosomal forms of glycoside hydrolases underpinning plant fiber degradation. These improvements in our mechanistic understanding of bacterial adhesion and enzyme regulation now offers the potential to: i) optimize ruminal and hindgut conditions by dietary additives to maximize fiber degradation (e.g. by the addition of select enzymes or PAA/PPA); ii) identify plant-borne influences on adhesion and fiber-degradation, which might be overcome (or improved) by conventional breeding or transgenic plant technologies and; iii) engineer or select microbes with improved adhesion capabilities, cellulosome assembly and fiber degradation. The potential benefits associated with this research proposal are likely to be realized in the medium term (5-10 years).