z-logo
open-access-imgOpen Access
Functional Analysis of Root-Knot Nematode Surface Coat Proteins to Develop Rational Targets for Plantibodies
Author(s) -
Michael A. McClure,
Y. Spiegel,
David Bird,
R. Salomon,
R. H. C. Curtis
Publication year - 2001
Language(s) - English
Resource type - Reports
DOI - 10.32747/2001.7575284.bard
Subject(s) - nematode , biology , antigen , glycoprotein , monoclonal antibody , mutant , antibody , root knot nematode , gene , microbiology and biotechnology , genetics , ecology
The goal of this research was to provide a better understanding of the interface between root-knot nematodes, Meloidogyne spp., and their host in order to develop rational targets for plantibodies and other novel methods of nematode control directed against the nematode surface coat (SC). Specific objectives were: 1. To produce additional monoclonal SC antibodies for use in Objectives 2, 3, and 4 and as candidates for development of plantibodies. 2. To determine the production and distribution of SC proteins during the infection process. 3. To use biochemical and immunological methods to perturbate the root-knot nematode SC in order to identify SC components that will serve as targets for rationally designed plantibodies. 4. To develop SC-mutant nematodes as additional tools for defining the role of the SC during infection. The external cuticular layer of nematodes is the epicuticle. In many nematodes, it is covered by a fuzzy material termed "surface coat" (SC). Since the SC is the outermost layer, it may playa role in the interaction between the nematode and its surroundings during all life stages in soil and during pathogenesis. The SC is composed mainly of proteins, carbohydrates (which can be part of glycoproteins), and lipids. SC proteins and glycoproteins have been labeled and extracted from preparasitic second-stage juveniles and adult females of Meloidogyne and specific antibodies have been raised against surface antigens. Antibodies can be used to gain more information about surface function and to isolate genes encoding for surface antigens. Characterization of surface antigens and their roles in different life-stages may be an important step towards the development of alternative control. Nevertheless, the role of the plant- parasitic nematode's surface in plant-nematode interaction is still not understood. Carbohydrates or carbohydrate-recognition domains (CROs) on the nematode surface may interact with CROs or carbohydrate molecules, on root surfaces or exudates, or be active after the nematode has penetrated into the root. Surface antigens undoubtedly play an important role in interactions with microorganisms that adhere to the nematodes. Polyclonal (PC) and monoclonal (MC) antibodies raised against Meloidogyne javanica, M. incognita and other plant-parasitic nematodes, were used to characterize the surface coat and secreted-excreted products of M. javanica and M. incognita. Some of the MC and PC antibodies raised against M. incognita showed cross-reactivity with the surface coat of M. javanica. Further characterization, in planta, of the epitopes recognized by the antibodies, showed that they were present in the parasitic juvenile stages and that the surface coat is shed during root penetration by the nematode and its migration between root cells. At the molecular level, we have followed two lines of experimentation. The first has been to identify genes encoding surface coat (SC) molecules, and we have isolated and characterized a small family of mucin genes from M. incognita. Our second approach has been to study host genes that respond to the nematode, and in particular, to the SC. Our previous work has identified a large suite of genes expressed in Lycopersicon esculentum giant cells, including the partial cDNA clone DB#131, which encodes a serine/threonine protein kinase. Isolation and predicted translation of the mature cDNA revealed a frame shift mutation in the translated region of nematode sensitive plants. By using primers homologous to conserved region of DB#131 we have identified the orthologues from three (nematode-resistant) Lycopersicon peruvianum strains and found that these plants lacked the mutation.  

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here