
Osmotin and Osmotin-Like Proteins as a Novel Source for Phytopathogenic Fungal Resistance in Transgenic Carnation and Tomato Plants
Author(s) -
A.A. Watad,
Paul M. Hasegawa,
Ray A. Bressan,
Alexander Vainstein,
Y. Elad
Publication year - 2000
Language(s) - English
Resource type - Reports
DOI - 10.32747/2000.7573992.bard
Subject(s) - carnation , biology , chitinase , transformation (genetics) , fusarium oxysporum , genetically modified crops , phytophthora infestans , transgene , agrobacterium , plant disease resistance , botany , horticulture , gene , genetics , blight
The goal of this project is to enhance fungal resistance of carnation and tomato through the ectopic expression of osmotin and other pathogenesis-related (PR) proteins. The research objectives were to evaluate in vitro antifungal activity of osmotin and osmotin and other PR protein combinations against phytopathogens (including Fusarium oxysporum, Verticillium dahliae, Botrytus cinerea or Phytophthora infestans), develop protocols for efficient transformation of carnation and tomato, express PR proteins in transgenic carnation and tomato and evaluate fungal resistance of transgenic plants. Protocols for microprojectile bombardment and Agrobacterium-mediated transformation of carnation were developed that are applicable for the biotechnology of numerous commercial cultivars. Research established an efficient organogenetic regeneration system, optimized gene delivery and transgene expression and defined parameters requisite to the high frequency recovery of transgenic plants. Additionally, an efficient Agrobacterium-mediated transformation protocol was developed for tomato that is applicable for use with numerous commercial varieties. Rigorous selection and reducing the cytokinin level in medium immediately after shoot induction resulted in substantially greater frequency of adventitious shoots that developed defined stems suitable for rooting and reconstitution of transgenic plants. Transformation vectors were constructed for co-expression of genes encoding osmotin and tobacco chitinase Ia or PR-1b. Expression of osmotin, PR-1 and/or chitinase in transgenic carnation mediated a high level resistance of cv. White Sim (susceptible variety) to F. oxysporum f. sp. dianthi, race 2 in greenhouse assays. These plants are being evaluated in field tests. Comprehensive analysis (12 to 17 experiments) indicated that germination of B. cinerea conidia was unaffected by PR protein expression but germ tube elongation was reduced substantially. The disease severity was significantly attenuated by PR protein expression. Constitutive expression of osmotin in transgenic tomato increased resistance to B. cinerea, and P. infestans. Grey mold and late blight resistance was stable through the third selfed generation. The research accomplished in this project will have profound effects on the use of biotechnology to improve carnation and tomato. Transformation protocols that are applicable for efficient stable gene transfer to numerous commercial varieties of carnation and tomato are the foundation for the capacity to bioengineer these crops. The research further establishes that PR proteins provide a measure of enhanced disease resistance. However, considerations of PR protein combinations and conditional regulation and targeting are likely required to achieve; sustained level of resistance.