z-logo
open-access-imgOpen Access
A Theoretical Study of 5-methyl-2-isopropylphenol (Thymol) by DFT
Author(s) -
Raksha Gupta
Publication year - 2021
Publication title -
international journal of scientific research in science and technology
Language(s) - English
Resource type - Journals
eISSN - 2395-602X
pISSN - 2395-6011
DOI - 10.32628/ijsrst2183182
Subject(s) - basis set , polarizability , mulliken population analysis , hyperpolarizability , chemistry , density functional theory , dipole , molecule , atomic physics , computational chemistry , physics , organic chemistry
Gaussian 09, RevisionA.01, software package was used for the theoretical quantum chemical calculations of 5-methyl-2-isopropylphenol. DFT/B3LYP/6-311G (d, p) basis was used to perform geometric optimization and vibrational frequency determination of the molecule. The statistical thermochemical calculations of the molecule were done at DFT/B3LYP/6-311G (d, p) basis set to calculate the standard thermodynamic functions: heat capacity (CV), entropy (S) and Enthalpy (E). Various NLO properties like total dipole moment (µ), mean linear polarizability (α), anisotropic polarizability (Δα), first order polarizability (β), and second order hyperpolarizability (γ) in terms of x, y, z components were calculated at DFT/B3LYP/6-311G (d, p) basis set for 5-methyl-2-isopropylphenol. Mulliken population analysis was also done using the same basis set. Time Dependent DFT (TD-DFT) method using the same basis set was used to compute UV-Visible absorption spectra, ECD spectra, electronic transitions, vertical excitation energies and oscillator strengths of 5-methyl-2-isopropylphenol.FMO analysis, ESP study were also done using the same basis set.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here