
Comparative Evaluation of Concentric Bracing Systems for Lateral Loads on Medium Rise Steel Building Structures
Author(s) -
Sisaynew Tesfaw Admassu
Publication year - 2020
Publication title -
international journal of scientific research in science and technology
Language(s) - English
Resource type - Journals
eISSN - 2395-602X
pISSN - 2395-6011
DOI - 10.32628/ijsrst207428
Subject(s) - bracing , structural engineering , stiffness , structural load , eurocode , structural system , concentric , braced frame , engineering , frame (networking) , geotechnical engineering , geology , mathematics , brace , mechanical engineering , geometry
To resistance, the lateral load from wind or an earthquake is that the reason for the evolution of varied structural systems. Because, when a medium or any multi-level structure is exposed to horizontal or torsional deflections under the action of seismic burdens. Lateral stiffness is a major consideration in the design of the buildings. In addition to this, many existing steel buildings and reinforced concrete buildings for which the weak lateral stiffness is the main problem; should be retrofitted to conquer the insufficiencies to resist the lateral loading. Lateral load resisting systems are structural elements providing basic lateral strength and stiffness, without which the structure would be laterally unstable. The unstable nature of the structure is solved by the fitting arrangement of bracings systems. A bracing system is that forms an integral part of the frame. Thus, such a structure has to be analyzed before arriving at the best type or effective arrangement of bracing. Bracing is a highly effective strategy of resisting lateral forces in a frame structure. In this document, a ten-story building with incorporated bracing systems is analysed using ETABS 2016 analysis software as per Eurocode and Ethiopian Building Code Standards (EBCS). Then, the lateral displacement is evaluated under each of the bracing types.