z-logo
open-access-imgOpen Access
Covid-19 Detection Using AI
Author(s) -
Shashank Mishra,
Himanshu Shukla,
Rajiv Singh,
Vivek Pandey,
Shubham Sagar,
Yasasvi Singh
Publication year - 2021
Publication title -
international journal of scientific research in science engineering and technology
Language(s) - English
Resource type - Journals
eISSN - 2395-1990
pISSN - 2394-4099
DOI - 10.32628/ijsrset2183130
Subject(s) - covid-19 , medicine , diagnostic test , test (biology) , medical physics , computer science , medical emergency , intensive care medicine , emergency medicine , artificial intelligence , pathology , paleontology , disease , outbreak , infectious disease (medical specialty) , biology
The sudden increase in COVID-19 patients is a major shock to our global health care systems. With limited availability of test kits, it is not possible for all patients with respiratory infections to be tested using RT-PCR. Testing also takes a long time, with limited sensitivity. The detection of COVID-19 infections on Chest X-Ray can help isolate patients at high risk while awaiting test results. X-Ray machines are already available in many health care systems, and with many modern X-Ray systems already installed on the computer, there is no travel time involved in the samples. In this work we propose the use of chest X-Ray to prioritize the selection of patients for further RT-PCR testing. This can be useful in a hospital setting where current systems have difficulty deciding whether to keep the patient in the ward with other patients or isolate them from COVID-19 areas. It may also be helpful in identifying patients with high risk of COVID with false positive RT-PCR that will require repeated testing. In addition, we recommend the use of modern AI techniques to detect COVID-19 patients who use X-Ray imaging in an automated manner, especially in areas where radiologists are not available, and help make the proposed diagnostic technology easier. Introducing the CovidAID: COVID-19 AI Detector, a model based on a deep neural network of screening patients for proper diagnosis. In a publicly available covid-chest x-ray-dataset [2], our model provides 90.5% accuracy with 100% sensitivity (remember) to COVID-19 infection. We are greatly improving the results of Covid-Net [10] on the same database.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom