
Sentiment Mining Model for Opinionated Afaan Oromo Texts
Author(s) -
Tariku Birhanu Yadesa,
Syed Umar,
Tagay Takele Fikadu
Publication year - 2020
Publication title -
international journal of scientific research in science, engineering and technology
Language(s) - English
Resource type - Journals
eISSN - 2395-1990
pISSN - 2394-4099
DOI - 10.32628/ijsrset2073131
Subject(s) - computer science , sentiment analysis , natural language processing , polysemy , artificial intelligence , lexical analysis , ambiguity , information retrieval , programming language
Opinions are personal judgment on entity. This is not only true for individuals but also true for organizations. Opinion mining is a type of natural language processing for tracking the mood of the public about a particular product. The process of sentiment mining involves categorizing an opinionated document into predefined categories such as positive, negative or neutral based on the sentiment terms that appear within the opinionated document. For this study text document corpus is prepared by the researcher encompassing different movies ‘reviews and Various techniques of text pre-processing including tokenization, normalization, stop word removal and stemming are used for this system(sentiment mining model for opinionated afaan Oromo texts). The experiment shows that the performance is on the average 0.849(84.9%) precision and 0.887(88.7%) recall. The challenging tasks in the study are handling synonymy and inability of the stemmer algorithm to all word variants, and ambiguity of words in the language. The performance the system can be increased if stemming algorithm is improved, standard test corpus is used, and thesaurus is used to handle polysemy and synonymy words in the language.