z-logo
open-access-imgOpen Access
Survey for the Prediction of Chronic Kidney Disease using Machine Learning
Author(s) -
Pooja Sharma,
Saket Swarndeep
Publication year - 2019
Publication title -
international journal of scientific research in science, engineering and technology
Language(s) - English
Resource type - Journals
eISSN - 2395-1990
pISSN - 2394-4099
DOI - 10.32628/ijsrset196629
Subject(s) - artificial neural network , kidney disease , machine learning , computer science , artificial intelligence , population , disease , data mining , medicine , pathology , environmental health
According the 2010 global burden of disease study, Chronic Kidney Diseases (CKD) was ranked 18th in the list of causes of total no. of deaths worldwide. 10% of the population worldwide is affected by CKD. The prediction of CKD can become a boon for the population to predict the health. Various method and techniques are undergoing the research phase for developing the most accurate CKD prediction system. Using Machine Learning techniques is the most promising one in this area due to its computing function and Machine Learning rules. Existing Systems are working well in predicting the accurate result but still more attributes of data and complicity of health parameter make the root layer for the innovation of new approaches. This study focuses on a novel approach for improving the prediction of CKD. In recent time Neural network system has discovered its use in disease diagnoses, which is depended upon prediction from symptoms data set. Chronic kidney disease detection system using neural network is shown here. This system of neural network accepts disease-symptoms as input and it is trained according to various training algorithms. After neural network is trained using back propagation algorithms, this trained neural network system is used for detection of kidney disease in the human body.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here