
A Multithreading Based Enhanced Process Scheduling Technique for Heterogeneous Distributed Environment
Author(s) -
Krishan Kumar,
. Renu
Publication year - 2021
Publication title -
international journal of scientific research in computer science, engineering and information technology
Language(s) - English
Resource type - Journals
ISSN - 2456-3307
DOI - 10.32628/cseit217543
Subject(s) - computer science , multithreading , parallel computing , multiprocessing , preemption , multi core processor , thread (computing) , speedup , scheduling (production processes) , simultaneous multithreading , multiprocessor scheduling , cache , fixed priority pre emptive scheduling , dynamic priority scheduling , distributed computing , schedule , operating system , rate monotonic scheduling , mathematical optimization , mathematics
Multithreading is ability of a central processing unit (CPU) or a single core within a multi-core processor to execute multiple processes or threads concurrently, appropriately supported by operating system. This approach differs from multiprocessing, as with multithreading processes & threads have to share resources of a single or multiple cores: computing units, CPU caches, & translation lookaside buffer (TLB). Multiprocessing systems include multiple complete processing units, multithreading aims to increase utilization of a single core by using thread-level as well as instruction-level parallelism. Objective of research is increase efficiency of scheduling dependent task using enhanced multithreading. gang scheduling of parallel implicit-deadline periodic task systems upon identical multiprocessor platforms is considered. In this scheduling problem, parallel tasks use several processors simultaneously. first algorithm is based on linear programming & is first one to be proved optimal for considered gang scheduling problem. Furthermore, it runs in polynomial time for a fixed number m of processors & an efficient implementation is fully detailed. Second algorithm is an approximation algorithm based on a fixed-priority rule that is competitive under resource augmentation analysis in order to compute an optimal schedule pattern. Precisely, its speedup factor is bounded by (2?1/m). Both algorithms are also evaluated through intensive numerical experiments. In our research we have enhanced capability of Gang Scheduling by integration of multi core processor & Cache & make simulation of performance in MATLAB.