
Study of Machine Learning Algorithms for Prediction and Diagnosis of Cardiovascular Diseases : A Review
Author(s) -
Manoj D. Patil,
Harsh Mathur
Publication year - 2020
Publication title -
international journal of scientific research in computer science, engineering and information technology
Language(s) - English
Resource type - Journals
ISSN - 2456-3307
DOI - 10.32628/cseit2062136
Subject(s) - disease , machine learning , heart disease , artificial intelligence , computer science , field (mathematics) , principal (computer security) , intensive care medicine , task (project management) , medicine , data science , pathology , engineering , mathematics , systems engineering , pure mathematics , operating system
We are living in a post modern era and there are tremendous changes happening to our daily life which make an impact on our health positively and negatively. As a result of these changes various kind of diseases are enormously increased. In the medical field, the diagnosis of cardiovascular disease is the most difficult task. The diagnosis of cardiovascular disease is difficult as a decision relied on grouping of large clinical and pathological data. Due to this complication, the interest increased in a significant amount between the researchers and clinical professionals about the efficient and accurate heart disease prediction. In case of heart disease, the correct diagnosis in early stage is important as time is the very important factor. Heart disease is the principal source of deaths widespread, and the prediction of Heart Disease is significant at an untimely phase. Machine learning in recent years has been the evolving, reliable and supporting tools in medical domain and has provided the greatest support for predicting disease with correct case of training and testing. This research paper intends to provide a survey of techniques of knowledge discovery in databases using data mining techniques that are in use in today’s medical research particularly in Cardiovascular Disease Prediction.