
A Comparative Study on Load-Frequency Controllers of a Five-Area Interconnected Power System
Author(s) -
Dao Thi Mai Phuong
Publication year - 2019
Publication title -
international journal of scientific research in computer science, engineering and information technology
Language(s) - English
Resource type - Journals
ISSN - 2456-3307
DOI - 10.32628/cseit1952271
Subject(s) - control theory (sociology) , electric power system , tie line , automatic frequency control , pid controller , computer science , power (physics) , controller (irrigation) , control engineering , matlab , nonlinear system , automatic generation control , control area , control (management) , engineering , temperature control , telecommunications , physics , quantum mechanics , artificial intelligence , agronomy , biology , operating system
The crucial objectives of load-frequency control (LFC) to a multi-area interconnected power system are to maintain the system frequency at a nominal value (50 Hz or 60 Hz) and the tie-line power flows at predetermined values. Based on tie-line bias control strategy, conventional regulators, such as I, PI and PID, were initially used for solving the LFC problem. Due to the complexity, nonlinearity and uncertainty of a multi-area power system in practice, the conventional regulators may not obtain the control performances good enough to bring the network back to the steady state as soon as possible. Meanwhile, intelligent controllers, such as fuzzy logic (FL)-based controllers, are able to completely replace these conventional counterparts. The superiority of the FL-based LFC controllers over the conventional ones for a typical case study of five-area interconnected power grids is validated in this paper through numerical simulations implemented in Matlab/Simulink package. It should be apparent from this comparative study that the LFC controller based on FL technique is a feasible selection in dealing with the LFC problem of a multi-area power network.