z-logo
open-access-imgOpen Access
ЕФЕКТИВНІСТЬ ЕНЕРГОТЕХНОЛОГІЧНОЇ УСТАНОВКИ ЩОДО ВИДОБУВАННЯ СІРКОВОДНЮ З ГЛИБИН ЧОРНОГО МОРЯ
Author(s) -
Mykhaylo Tkach,
Борис Георгійович Тимошевський,
Аркадій Юрійович Проскурін,
Юрій Миколайович Галинкін
Publication year - 2019
Publication title -
avacìjno-kosmìčna tehnìka ì tehnologìâ/avìacìjno-kosmìčna tehnìka ta tehnologìâ
Language(s) - English
Resource type - Journals
eISSN - 2663-2217
pISSN - 1727-7337
DOI - 10.32620/aktt.2019.7.06
Subject(s) - hydrogen sulfide , separator (oil production) , seawater , sulfide , hydrogen , petroleum engineering , clathrate hydrate , materials science , environmental science , waste management , chemistry , geology , metallurgy , thermodynamics , sulfur , hydrate , engineering , oceanography , physics , organic chemistry
The article discusses a promising energy-technology unit for the extraction of hydrogen sulfide from the deep waters of the Black Sea, which provides for raising the gas-liquid mixture from the depths by the gas-lift method using wave pulses to separate hydrogen sulfide in the gaseous state. The installation includes a supply line, which is lowered to the required depth, a supply pump, a coalescing separator, a seawater discharge line with a reduced concentration of hydrogen sulfide, a control valve, a hydrodynamic generator of mechanical vibrations, a lifting pipeline, a high pressure hydrogen sulfide separator, a hydraulic turbine, a low pressure hydrogen sulfide separator, seawater discharge pipe and hydrogen sulfide expander. This unit will improve the energy efficiency and operational reliability of the process of hydrogen sulfide production, as well as reduce the burden on the Black Sea environment. A mathematical model of this setup has been developed. The results obtained by the mathematical model adequately coincide with the known experimental ones. This suggests that it is possible to use the model to determine the parameters of the process for the extraction of hydrogen sulfide from the Black Sea. The parameters of the process for the extraction of hydrogen sulfide from the Black Sea in the depth range of the pipeline 0...1000 m at a temperature of 280...285 K. It has been established that increasing the gas content of seawater from 0 to 2.5 m3/m3 leads to a decrease in the pressure value by 2.2 MPa. A further increase in seawater gas content from 2.5 to 5.0 m3/m3 is accompanied by a decrease in pressure of another 1.6 MPa. Such a significant decrease in pressure at the inlet to the riser piping allows hydrogen sulfide and seawater to be obtained at a pressure that is substantially greater than atmospheric. The excess pressure at the outlet of the lifting pipeline is determined based on data obtained by the method of "equivalent length". When the seawater gas content is 2.5 m3/m3, the pipeline’s immersion depth is 250...1000 m, the value of the overpressure of substances at the exit of the lifting pipeline will be 0.2...0.45 MPa, and at 5 m3/m3 – 0.67...1.07 MPa, at 7.5 m3/m3 – 0.83...1.4 MPa and at 10 m3/m3 – 0.97...1.68 MPa.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here