z-logo
open-access-imgOpen Access
ОСОБЕННОСТИ ПРИМЕНЕНИЯ ПРОДУКТОВ КОНВЕРСИИ МЕТАНОЛА В СУДОВОЙ ГАЗОТУРБИННОЙ УСТАНОВКЕ С ТЕРМОХИМИЧЕСКОЙ РЕГЕНЕРАЦИЕЙ СБРОСНОГО ТЕПЛА
Author(s) -
Александр Константинович Чередниченко
Publication year - 2019
Publication title -
avacìjno-kosmìčna tehnìka ì tehnologìâ/avìacìjno-kosmìčna tehnìka ta tehnologìâ
Language(s) - English
Resource type - Journals
eISSN - 2663-2217
pISSN - 1727-7337
DOI - 10.32620/aktt.2019.3.03
Subject(s) - thermal efficiency , methanol , process engineering , environmental science , combined cycle , steam reforming , fossil fuel , waste management , turbine , nuclear engineering , chemistry , mechanical engineering , engineering , hydrogen , combustion , hydrogen production , organic chemistry
The research’s subject is the processes of energy transformation of fuel in the ship gas turbine plant with thermochemical regeneration. Modern approaches to assessing the energy efficiency of ship power plants were considered. The characteristics of traditional and alternative marine fuels were analyzed. The use of methanol as a low-carbon marine fuel is discussed. It is proposed to increase the efficiency of methanol use by using synthesis gas obtained through thermochemical heat recovery of secondary energy resources of ship engines. The main objective of the study is to analyze the effects on the energy efficiency of steam thermochemical transformation of methanol of the limitations associated with the system of supplying gaseous fuel to the engine. The influence of pressure in the thermochemical reactor on the steam’s efficiency of reforming of methanol was analyzed. The design schemes of two variants of the ship gas turbine installation with thermochemical heat recovery by steam conversion of methanol are presented. The methanol conversion efficiency was determined by the heat potential of the exhaust gases and was calculated based on the thermal balance of the thermochemical reactor. The reactor’s model is two- component. The mathematical model of the turbocompressor unit is based on an enlarged calculation taking into account the total pressure loss in all elements of the gas-air duct. The results of mathematical modeling of processes in plants based on gas turbine engines of simple and regenerative cycles under conditions of fixed methanol’s consumption, the fixed temperature of the gas in the turbine’s front for environmental parameters according to ISO 19859: 2016 are presented. The efficiency of the scheme which used steam conversion of methanol at pressures corresponding to the working pressure in the combustion chamber was revealed. The increase in the energy efficiency of the installation is 3 ... 5 % with basic parameters and 10 ... 11 % for higher conduction temperatures or for catalytic reactors. The research results can be used in the promising power plants designing.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here