z-logo
open-access-imgOpen Access
Applying ANN, ANFIS, and LSSVM Models for Estimation of Acid Solvent Solubility in Supercritical CO2
Author(s) -
Amin Bemani,
Alireza Akbarzadeh Baghban,
Shahaboddin Shamshirband,
Amir Mosavi,
Péter Csiba,
Annamária R. Várkonyi-Kóczy
Publication year - 2020
Publication title -
computers, materials and continua/computers, materials and continua (print)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.788
H-Index - 40
eISSN - 1546-2226
pISSN - 1546-2218
DOI - 10.32604/cmc.2020.07723
Subject(s) - supercritical carbon dioxide , solubility , adaptive neuro fuzzy inference system , artificial neural network , least squares support vector machine , perceptron , multilayer perceptron , supercritical fluid , artificial intelligence , support vector machine , computer science , machine learning , fuzzy logic , radial basis function , extreme learning machine , biological system , chemistry , fuzzy control system , organic chemistry , biology

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here