z-logo
open-access-imgOpen Access
Applying ANN, ANFIS, and LSSVM Models for Estimation of Acid Solvent Solubility in Supercritical CO2
Author(s) -
Amin Bemani,
Alireza Baghban,
Shahaboddin Shamshirband,
Amir Mosavi,
Péter Csiba,
Annamária R. Várkonyi-Kóczy
Publication year - 2020
Publication title -
computers, materials and continua/computers, materials and continua (print)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.788
H-Index - 40
eISSN - 1546-2226
pISSN - 1546-2218
DOI - 10.32604/cmc.2020.07723
Subject(s) - supercritical carbon dioxide , solubility , adaptive neuro fuzzy inference system , artificial neural network , least squares support vector machine , perceptron , multilayer perceptron , supercritical fluid , artificial intelligence , support vector machine , computer science , machine learning , fuzzy logic , radial basis function , extreme learning machine , biological system , chemistry , fuzzy control system , organic chemistry , biology

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom