
DL-HAR: Deep Learning-Based Human Activity Recognition Framework for Edge Computing
Author(s) -
Abdu Gumaei,
Mabrook Al-Rakhami,
Hussain AlSalman,
Sk. Md. Mizanur Rahman,
Atif Alamri
Publication year - 2020
Publication title -
computers, materials and continua/computers, materials and continua (print)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.788
H-Index - 40
eISSN - 1546-2226
pISSN - 1546-2218
DOI - 10.32604/cmc.2020.011740
Subject(s) - activity recognition , computer science , deep learning , exploit , cloud computing , benchmark (surveying) , enhanced data rates for gsm evolution , edge computing , artificial intelligence , edge device , machine learning , focus (optics) , set (abstract data type) , internet of things , embedded system , computer security , operating system , physics , geodesy , optics , programming language , geography