z-logo
open-access-imgOpen Access
EMISSION PROCESSES OF QUANTUM WELL INTERACTION WITH DELTA-LAYER IN pHEMT-HETEROSTRUCTURES
Author(s) -
Ya. V. Ivanova,
G. E. Yakovlev,
В. И. Зубков
Publication year - 2018
Publication title -
izvestiâ vysših učebnyh zavedenij rossii. radioèlektronika
Language(s) - English
Resource type - Journals
eISSN - 2658-4794
pISSN - 1993-8985
DOI - 10.32603/1993-8985-2018-21-5-44-50
Subject(s) - heterojunction , high electron mobility transistor , optoelectronics , materials science , quantum well , transistor , capacitance , voltage , electrical engineering , chemistry , physics , optics , electrode , engineering , laser
The paper provides experimental and theoretical study of pHEMT heterostructures with quantum well (QW) AlGaAs/InGaAs/GaAs and delta-doped layer used as active layers for fabrication of 4-18 GHz transistors. As the experimental techniques, the electrochemical capacitance-voltage (ECV) profiling and other methods of admittance spectroscopy are applied. Modernization of commercial ECV-profiling setup allows observing for the first time the concentration peak from a near-surface delta-layer of pHEMT heterostructures together with the enrichment peak from the quantum well. In order to optimize the etching speed the crater bottom control is performed by means of AFM. The electrolyte-semiconductor contact capacitance is measured with Agilent RLC-meter. The main theoretical technique used in the research is numerical modeling of nanoheterostructure key electronic features by self-consistent solution of Schrödinger and Poisson equations. The potential line-up for the conduction band bottom is obtained, and the quantized energy levels are calculated. The complex analysis of series of samples is carried out in order to understand the influence of delta-layer position on the level depth and at the carrier concentration. The optimum distance between QW and delta-layer providing the most efficient charge carrier delivery to quantum well is found. The performed research is aimed at improvement of microwave electronic devices allowing increase of the gain coefficient and the transfer characteristic of SHF-transistors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here