z-logo
open-access-imgOpen Access
The The variable size consideration of hydroxyapatite extracted from bovine bone at different temperature furnaces
Author(s) -
Linh Vân Hà,
Cao Huu Tien,
Diem Mai thi Tran
Publication year - 2020
Publication title -
khoa học và công nghệ: tự nhiên
Language(s) - English
Resource type - Journals
ISSN - 2588-106X
DOI - 10.32508/stdjns.v5i1.967
Subject(s) - particle size , crystal (programming language) , materials science , bone tissue , compact bone , fourier transform infrared spectroscopy , chemistry , chemical engineering , biomedical engineering , anatomy , medicine , computer science , programming language , engineering
Current bone regeneration surgeries focus on regenerating damaged bone tissue structures rather than replacing them. Bone-derived hydroxyapatite (HAP) is a natural bone component with good bone resilience, emerging and a promising bone graft material. Factors in the synthesis process are very important to the properties of hydroxyapatite. The purpose of this study is to assess the effect of three different furnaced temperatures on the size and phase purity of the HA crystal. The research consists of the following two stages: after combining physical and chemical methods in the first period to eliminate most of the organic components; bones continue to be heated at temperatures of 600oC, 700oC and 800oC to create the various size of HA crystals in bone particles. Product composition and size of HA crystal are determined by TGA, XRD, FTIR, SEM, EDX methods. The results show that crystal size and phase purity can be controlled and increased with the temperature. In particular, the HA crystal size did not change significantly in the range of 600◦C but increased 10-times above 700◦C. Single crystal HA is expected to form in the range of 600 - 700◦C. After the sample was heated to 600◦C, the organic compounds such as blood and bone marrow were completely burned. In addition, two trace elements, Na and Mg, were not completely removed as in other cases but were still retained inside the bone particle. The Ca/P ratio is 1.63 is similar to the Ca/P ratio found in human bones.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here