z-logo
open-access-imgOpen Access
Optimization of probe immobilization by covalent links on gold nanowire based- electrochemical biosensor
Author(s) -
Tien Huu Cao,
Linh Ha,
Hieu Van Le
Publication year - 2015
Publication title -
science and technology development journal
Language(s) - English
Resource type - Journals
ISSN - 1859-0128
DOI - 10.32508/stdj.v18i3.829
Subject(s) - biosensor , electrode , hybridization probe , materials science , analytical chemistry (journal) , covalent bond , nanotechnology , electrochemistry , chemistry , dna , chromatography , organic chemistry , biochemistry
The optimization of DNA probe immobilisation on gold electrode surface is very important to develop DNA biosensors. In this study, we conducted an experiment to determine the optimal concentration of probe attached on the electrodes and probe immobilization agent (mercaptohexanol) for maximum hybridization efficacy. We have used a method to control the surface density of DNA probe by annealing probe modified by thiol and mercaptohexanol. With linear relationship between molar ratio and surface density of probe, by controlling probe concentration in sensor fabricating process, we can determine the molecular density of DNA probes on electrode surface. The results show that probe concentration 500 nM and 1.5 mM mercaptohaxenol are optimal for hybidization with DNA target.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom