Reduction of graphene oxide by TiO2 nanotubes photocatalyst
Author(s) -
Son Vinh Nguyen,
Trinh Thi Diem Duong,
Phuong Tuyet Nguyen,
Nhu Thi So Le
Publication year - 2015
Publication title -
science and technology development journal
Language(s) - English
Resource type - Journals
ISSN - 1859-0128
DOI - 10.32508/stdj.v18i2.1188
Subject(s) - graphene , oxide , materials science , photocatalysis , graphene oxide paper , composite number , graphene nanoribbons , chemical engineering , nanotechnology , conductivity , catalysis , composite material , chemistry , organic chemistry , engineering , metallurgy
Graphene has attracted studies because of its superior properties and potential applications. In this research, we aimed to implement a friendly environmental method to produce TiO2/graphene composite by using photo-catalyst materials – TiO2 nanotubes – to reduce graphene oxide. The TiO2 nanotubes was synthesized by alkaline hydrothermal treatment method, and have the surface area (BET) of 418,3 m2/g, and diameter of 8-10 nm. Graphene oxide with 2- 5 graphene layers was produced by Hummers method. The mixture of GO and TiO2 in water, with the ratio mTiO2/mGO = 1/1, was irradiated under an UVC-20W light during different time (1, 3, 5, 7, and 9 h). The reduction of GO to graphene was investigated by semi-quantitative infrared spectroscopy and electrical conductivity. Results showed that the reduction of GO reached to the maximum after 5 hours; and the electrical conductivity of the TiO2/ graphene composite was 0,13 S.cm-1.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom