
Stuydy on sequencing batch moving bed membrane bioreactor technology (SBMBMBR) for the removal of organic and total nitrogen in tannery wastewater
Author(s) -
Linh Van Tran,
Phuoc Van Nguyen,
Phuong Thi Thanh Nguyen
Publication year - 2014
Publication title -
khoa học công nghệ
Language(s) - English
Resource type - Journals
ISSN - 1859-0128
DOI - 10.32508/stdj.v17i2.1306
Subject(s) - wastewater , chemistry , nitrogen , sequencing batch reactor , membrane bioreactor , pulp and paper industry , filtration (mathematics) , bioreactor , mixed liquor suspended solids , biomass (ecology) , activated sludge , sewage treatment , suspended solids , chromatography , environmental engineering , environmental science , biology , agronomy , organic chemistry , engineering , statistics , mathematics
The SBMBMBR technology (sequencing batch moving bed membrane bioreactor), a combiantion of membrane filtration MF process in activated sludge with sequencing batch (SBR) moving bed using Anox Kaldnes K2 (MBBR), has been studied for the removal of organic and total nitrogen in tannery wastewater. After 170 days, reasearch results showed that the COD removal efficiency was ranged from 89,2±0,6 to 95,9±0,3% when the organic loading rate changed from 0,564±0,019 to 1.207±99 kgCOD/m3/day. The total nitrogen removal efficiency reached 30,0±4,9 to 65,9±13,3. The highest COD removal efficiency was 0,72±0,02 kgCOD/m3/day. The lowest nitrogen removal efficiency was 10,8±5,4% at 0,327±0,020 kgTN/m3/day of nitrogen loading rate. During the research, the adhensional tension of microorganism was insignificant. The biomass remained unchanged with 6.808±226 mg/L of Mixed liquor suspended solids (MLSS). When the salinity went up from 3.500 to 8.000 mgCl/l, the COD and nitrogen removal efficiency decreased. However, the conversion of nitrogen was improved and the recovery of biomass following the changed loading rate was quite fast.