z-logo
open-access-imgOpen Access
Detecting Anomalies in Sequences of Short Text Using Iterative Language Models
Author(s) -
Cynthia Freeman,
Ian Beaver,
Abdullah Mueen
Publication year - 2021
Publication title -
proceedings of the ... international florida artificial intelligence research society conference
Language(s) - English
Resource type - Journals
eISSN - 2334-0762
pISSN - 2334-0754
DOI - 10.32473/flairs.v34i1.128551
Subject(s) - computer science , perplexity , anomaly detection , false positive paradox , artificial intelligence , matrix decomposition , language model , natural language processing , eigenvalues and eigenvectors , physics , quantum mechanics
Business managers using Intelligent Virtual Assistants (IVAs) to enhance their company's customer service need ways to accurately and efficiently detect anomalies in conversations between the IVA and customers, vital for customer retention and satisfaction. Unfortunately, anomaly detection is a challenging problem because of the subjective nature of what is defined as anomalous. Detecting anomalies in sequences of short texts, common in chat settings, is even more difficult because independently generated texts are similar only at a semantic level, resulting in an abundance of false positives. In addition, literature for detecting anomalies in time ordered sequences of short text is shallow considering the abundance of such data sets in online settings. We introduce a technique for detecting anomalies in sequences of short textual data by adaptively and iteratively learning low perplexity language models. Our algorithm defines a short textual item as anomalous when its cross-entropy exceeds the upper confidence interval of a trained additive regression model. We demonstrate successful case studies and bridge the gap between theory and practice by finding anomalies in sequences of real conversations with virtual chat agents. Empirical evaluation shows that our method achieves, on average, 31% higher max F1 scores than the baseline method of non-negative matrix factorization across three large human-annotated sequences of short texts.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here