
Ensemble-based Semi-Supervised Learning for Hate Speech Detection
Author(s) -
Safa Alsafari,
Samira Sadaoui
Publication year - 2021
Publication title -
proceedings of the ... international florida artificial intelligence research society conference
Language(s) - English
Resource type - Journals
eISSN - 2334-0762
pISSN - 2334-0754
DOI - 10.32473/flairs.v34i1.128427
Subject(s) - leverage (statistics) , computer science , ensemble learning , artificial intelligence , labeled data , voice activity detection , machine learning , supervised learning , natural language processing , speech recognition , speech processing , artificial neural network
Large and accurately labeled textual corpora are vital to developing efficient hate speech classifiers. This paper introduces an ensemble-based semi-supervised learning approach to leverage the availability of abundant social media content. Starting with a reliable hate speech dataset, we train and test diverse classifiers that are then used to label a corpus of one million tweets. Next, we investigate several strategies to select the most confident labels from the obtained pseudo labels. We assess these strategies by re-training all the classifiers with the seed dataset augmented with the trusted pseudo-labeled data. Finally, we demonstrate that our approach improves classification performance over supervised hate speech classification methods.