
SCREW DESCENT, ANALYTICAL DESCRIPTION OF WHICH INCLUDES THE EQUATION OF PARTICLE MOVEMENT ON AN INCLINED PLANE
Author(s) -
Tatiana Volina
Publication year - 2021
Publication title -
prikladnaâ geometriâ i inženernaâ grafika
Language(s) - English
Resource type - Journals
ISSN - 0131-579X
DOI - 10.32347/0131-579x.2021.100.89-98
Subject(s) - inclined plane , cylinder , plane (geometry) , mechanics , constant angular velocity , particle (ecology) , constant (computer programming) , horizontal plane , surface (topology) , physics , classical mechanics , vertical plane , rotation (mathematics) , angular velocity , geometry , mathematics , geology , engineering , structural engineering , computer science , oceanography , quantum mechanics , programming language
To study the modes of particle movement depending on the constructive parameters of the surface, it is important to have analytical dependencies of this movement. An analytical description of the movement of a load on the example of a material particle on the surface of a gravitational descent formed by a screw conoid and a coaxial vertical limiting cylinder was developed in the article. It makes it possible to find the constructive parameters of the descent, which will provide the required speed of the transportation. If the surface of the confining cylinder is absolutely smooth, then the movement of the particle along such a descent will be uniformly accelerated or equally slowed down depending on the value of the angle of inclination of the plane, that is, similar to movement along an inclined plane. If the angle of inclination of the plane is equal to the angle of friction, then the particle will move with a constant angular velocity of rotation, then one can find the linear velocity, which will also be constant. The value of this speed will be equal to the initial one. If the angle of inclination of the plane is equal to the angle of friction, but the coefficient of friction is not equal to zero, then the particle will be decelerated due to the action of the friction force of the particle on the surface of the cylinder. This is the difference from descent along an inclined plane, along which the particle in this case will move at a constant speed. In the general case, when the angle of ascent of the helix is greater than the angle of friction, the driving force and the force of friction on the surface of the conoid and on the surface of the cylinder are balanced with each other and the angular velocity of rotation of the particle becomes constant. Consequently, it is possible to provide the required speed of transportation of the material at various ratios of the structural parameters of the surface with known coefficients of friction. To reduce the overall dimensions of the screw descent, it is necessary to reduce the radius of the limiting cylinder; however, with this limitation, the weight of loads should be taken into account.