
Anti-Inflammatory Gene Therapy Improves Spatial Memory Performance in a Mouse Model of Alzheimer’s Disease
Author(s) -
T.J. Yoo
Publication year - 2022
Publication title -
journal of alzheimer's disease
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.677
H-Index - 139
eISSN - 1875-8908
pISSN - 1387-2877
DOI - 10.3233/jad-215270
Subject(s) - neuroinflammation , genetic enhancement , immune system , downregulation and upregulation , disease , cognitive decline , alzheimer's disease , amyloid (mycology) , gene , immunology , medicine , inflammation , neuroscience , biology , dementia , genetics , pathology
The immune system plays a critical role in neurodegenerative processes involved in Alzheimer’s disease (AD). In this study, a gene-based immunotherapeutic method examined the effects of anti-inflammatory cellular immune response elements (CIREs) in the amyloid-β protein precursor (AβPP) mouse model. Bi-monthly intramuscular administration, beginning at either 4 or 6 months, and examined at 7.5 through 16 months, with plasmids encoding Interleukin (IL)-10, IL-4, TGF-β polynucleotides, or a combination thereof, into AβPP mice improved spatial memory performance. This work demonstrates an efficient gene therapy strategy to downregulate neuroinflammation, and possibly prevent or delay cognitive decline in AD.