z-logo
open-access-imgOpen Access
NUMERICAL ANALYSIS OF THE DYNAMICS OF THREE-DIMENSIONAL ANISOTROPIC BODIES BASED ON NON-CLASSICAL BOUNDARY INTEGRAL EQUATIONS
Author(s) -
А. С. Белов,
Andrey N. Petrov
Publication year - 2021
Publication title -
problemy pročnosti i plastičnosti
Language(s) - English
Resource type - Journals
ISSN - 1814-9146
DOI - 10.32326/1814-9146-2021-83-1-76-86
Subject(s) - integral equation , mathematics , mathematical analysis , boundary element method , singular boundary method , method of fundamental solutions , boundary value problem , fredholm integral equation , finite element method , physics , thermodynamics
The application of non-classical approach of the boundary integral equation method in combination with the integral Laplace transform in time to anisotropic elastic wave modeling is considered. In contrast to the classical approach of the boundary integral equation method which is successfully implemented for solving three-dimensional isotropic problems of the dynamic theory of elasticity, viscoelasticity and poroelasticity, the alternative nonclassical formulation of the boundary integral equations method is presented that employs regular Fredholm integral equations of the first kind (integral equations on a plane wave). The construction of such boundary integral equations is based on the structure of the dynamic fundamental solution. The approach employs the explicit boundary integral equations. The inverse Laplace transform is constructed numerically by the Durbin method. A numerical solution of the dynamic problem of anisotropic elasticity theory based on the boundary integral equations method in a nonclassical formulation is presented. The boundary element scheme of the boundary integral equations method is built on the basis of a regular integral equation of the first kind. The problem is solved in anisotropic formulation for the load acting along the normal in the form of the Heaviside function on the cube face weakened by a cubic cavity. The obtained boundary element solutions are compared with finite element solutions. Numerical results prove the efficiency of using boundary integral equations on a single plane wave in solving three-dimensional anisotropic dynamic problems of elasticity theory. The convergence of boundary element solutions is studied on three schemes of surface discretization. The achieved calculation accuracy is not inferior to the accuracy of boundary element schemes for classical boundary integral equations. Boundary element analysis of solutions for a cube with and without a cavity is carried out.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here