
INTEGRAL-DIFFERENTIAL RELATIONS IN THE PROBLEM OF FREE BENDING VIBRATIONS OF VARIABLE CROSS-SECTION BEAMS
Author(s) -
Vasily V. Saurin
Publication year - 2019
Publication title -
problemy pročnosti i plastičnosti
Language(s) - English
Resource type - Journals
ISSN - 1814-9146
DOI - 10.32326/1814-9146-2019-81-4-449-460
Subject(s) - mathematics , boundary value problem , mathematical analysis , differential equation , beam (structure) , nonlinear system , variable (mathematics) , ordinary differential equation , vibration , physics , quantum mechanics , optics
Issues related to eigen-vibrations of elastic beams of variable cross-section are discussed. It is noted that one of the common features characteristic of boundary-value problems of mathematical physics is certain ambiguity of their formulations. A boundary-value problem of determining eigen-frequencies of a variable cross-section beam in displacements is formulated. By introducing new variables characterizing the behavior of the system, the boundary-value problem is reduced to three ordinary differential equations with variable coefficients. The new variables have a distinct physical meaning. One of the functions is linear density of the pulse and the other is bending moment in the cross-section of the beam. Such a formulation of the problem of free vibrations of a variable cross-section beam makes it possible to reduce the system of differential equations to a single fourth-order equation written in terms of pulse functions. This equation is equivalent to the initial one, formulated in displacements, but has a different form. A method of integral-differential relations, alternative to classical numerical approaches, is described. The possibility of constructing various bilateral energy-based evaluations of the accuracy of approximate solutions resulting from the method of integral-differential relations is studied. The projection approach to analyzing spectral problems of nonlinear beam theory is considered. The efficiency of the method of integral-differential equations is demonstrated, using the problem of free vibrations of a rectangular beam with a constructional depth quadratically varying along its length. Energy-based evaluations of the accuracy of the approximate solutions constructed using polynomial approximations of the sought functions are presented. It is shown that applying standard Bubnov-Galerkin's method to the problem of free vibrations leads to the appearance of complex eigen-frequencies. At the same time, the ratio of the imaginary component to the real one of the eigen-value is a relative inaccuracy of the solution of the boundary-value problem. The introduced numerical algorithm makes it possible to evaluate unambiguously the local and integral quality of numerical solutions obtained.