z-logo
open-access-imgOpen Access
ANALYZING THE SPHERICAL CAVITY EXPANSION PROBLEM IN A MEDIUM WITH MOHR − COULOMB − TRESCA'S PLASTICITY CONDITION
Author(s) -
В. Л. Котов,
D.B. Timofeev
Publication year - 2019
Publication title -
problemy pročnosti i plastičnosti
Language(s) - English
Resource type - Journals
ISSN - 1814-9146
DOI - 10.32326/1814-9146-2019-81-3-292-304
Subject(s) - plasticity , mechanics , dimensionless quantity , boundary value problem , mohr–coulomb theory , mathematical analysis , physics , classical mechanics , mathematics , finite element method , thermodynamics
An analytical solution of the one-dimensional problem of a spherical cavity expanding at a constant velocity from a point in a space occupied by a plastic medium has been obtained. Impact compressibility of the medium is described using linear Hugoniot's adiabat. Plastic deformation obeys the Mohr - Coulomb yield criterion with constraints on the value of maximum tangential stresses according to Tresca's criterion. In the assumption of rigid-plastic deformation (the elastic precursor being neglected), incompressibility behind the shockwave front and the equality of the propagation velocities of the fronts of the plastic wave and the plane shockwave defined by linear Hugoniot's adiabat, a boundary-value problem for a system of two first-order ordinary differential equations for the dimensionless velocity and stress depending on the self-similar variable is formulated. A closed-form solution of this problem has been obtained in the form of a stationary running wave - a plastic shockwave propagating in an unperturbed half-space. This solution is a generalization of the earlier obtained analytical solution for a medium with the Mohr - Coulomb plasticity condition.The effect of constraining the limiting value of maximal tangential stresses on the distribution of dimensionless stresses behind the shockwave front has been examined. Formulas for determining the range of cavity expansion velocities, within which a simple solution for a medium with Tresca's plasticity condition is applicable, have been derived. The obtained solution can be used for evaluating resistance to high-velocity penetration of rigid strikers into low-strength soil media.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here