On the relationship between J-integral and CTOD for CT and SENB specimens
Author(s) -
S. K. Kudari,
Krishnaraja G. Kodancha
Publication year - 2008
Publication title -
frattura ed integrità strutturale
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.368
H-Index - 19
ISSN - 1971-8993
DOI - 10.3221/igf-esis.06.01
Subject(s) - crack tip opening displacement , materials science , finite element method , enhanced data rates for gsm evolution , j integral , structural engineering , hinge , geometry , fracture (geology) , composite material , mathematics , fracture mechanics , stress intensity factor , computer science , engineering , telecommunications
In this investigation the relationship between J-integral and CTOD is studied considering a Compact Tensile (CT) and Single edge notched bend (SENB) specimens using finite element analysis. The magnitude of CTOD is estimated by 90o-intercept method and also by plastic hinge model. The results indicate that there exists a discrepancy in estimation of CTOD by 90o-intercept method and by plastic hinge model. The CTOD values obtained by both the methods are found to be linearly proportional to J-integral. The linear proportionality constant dn between CTOD and J is found to strongly depend on the method of estimation of CTOD, specimen geometry and a/W ratio of the specimens
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom