
Some spectral sets of linear operators pencils on non-archimedean Banach spaces
Author(s) -
Aziz Blali,
Abdelkhalek El Amrani,
Jawad Ettayb
Publication year - 2022
Publication title -
bulletin of the "transilvania" university of braşov. series iii, mathematics and computer science
Language(s) - English
Resource type - Journals
eISSN - 2810-2037
pISSN - 2810-2029
DOI - 10.31926/but.mif.2022.2.64.1.4
Subject(s) - trace (psycholinguistics) , finite rank operator , nuclear operator , spectrum (functional analysis) , mathematics , bounded operator , bounded function , banach space , approximation property , linear operators , pure mathematics , c0 semigroup , spectral properties , unbounded operator , broad spectrum , operator (biology) , operator theory , mathematical analysis , physics , philosophy , linguistics , chemistry , combinatorial chemistry , biochemistry , repressor , quantum mechanics , astrophysics , transcription factor , gene