
High-alumina pyroxenite xenoliths from Quaternary basalts of NW Spitsbergen - evidence of continental crust delamination
Author(s) -
M. Yu. Koreshkova,
Yu. B. Marin,
Л. П. Никитина,
Hilary Downes,
A. Tokusheva,
Alexey Goncharov
Publication year - 2019
Publication title -
doklady akademii nauk. rossijskaâ akademiâ nauk
Language(s) - English
Resource type - Journals
ISSN - 0869-5652
DOI - 10.31857/s0869-56524855604-608
Subject(s) - geology , geochemistry , basalt , xenolith , spinel , mantle (geology) , crust , ultramafic rock , continental crust , petrology , paleontology
The origin of spinel-garnet pyroxenite from xenoliths in Quaternary basaltoids of Spitsbergen Island (Svalbard Archipelago) is discussed. The rocks have a high concentration of Al2O3 and MgO and low Cr. The primary magmatic association Spl-Opx-Cpx and the high Al content in pyroxenes provide evidence for the formation of these rocks as cumulates of hydrous basaltic melts in the lower crust at a pressure of ~1.2 GPa. Transformation of the texture from the magmatic hypidiomorphic to the metamorphic granoblastic and growth of garnet at the expense of spinel and high-alumina pyroxenes indicate transport of rocks to a depth below the spinel/garnet phase transition boundary in the Cr2O3-free CaO-MgO-Al2O3-SiO2 system. The parameters of the Grt-Opx equilibrium range within 1060-1120 °C and 2.2-2.6 GPa. Thus, magmatic pyroxenite was transported to a great depth into the mantle, which provides evidence for delamination in the region of the lower continental crust containing ultramafic cumulates.