z-logo
open-access-imgOpen Access
A disproof of the zero-one law for existential monadic second order properties of sparse binomial random graphs
Author(s) -
Alena Egorova,
Alena Egorova,
Maksim Zhukovskii,
Maksim Zhukovskii
Publication year - 2019
Publication title -
doklady akademii nauk. rossijskaâ akademiâ nauk
Language(s) - English
Resource type - Journals
ISSN - 0869-5652
DOI - 10.31857/s0869-56524845519-522
Subject(s) - mathematics , limit (mathematics) , binomial (polynomial) , zero (linguistics) , binomial coefficient , combinatorics , graph , order (exchange) , random graph , random variable , existentialism , discrete mathematics , binomial theorem , law , statistics , philosophy , linguistics , mathematical analysis , finance , political science , economics
We construct existential monadic second order sentences that have no limit probabilities on binomial sparse random graph G(n; n–α) . For α < , the constructions have only one monadic variable.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here