z-logo
open-access-imgOpen Access
Tối ưu hóa ước tính mức tiêu thụ năng lượng trong các tòa nhà dựa trên các thuật toán trí tuệ nhân tạo
Author(s) -
Trần Đức Học,
Lê Tấn Tài
Publication year - 2020
Publication title -
khoa học công nghệ xây dựng
Language(s) - Vietnamese
Resource type - Journals
eISSN - 2734-9489
pISSN - 2615-9058
DOI - 10.31814/stce.nuce2020-14(1v)-04
Subject(s) - chemistry , stereochemistry , analytical chemistry (journal) , nuclear chemistry , chromatography
Mô phỏng và dự báo năng lượng tiêu thụ đóng vai trò quan trọng trong việc thiết lập chính sách năng lượng và đưa ra quyết định theo hướng phát triển bền vững. Nghiên cứu này sử dụng phương pháp kỹ thuật thống kê và công cụ trí tuệ nhân tạo bao gồm mạng nơ-ron thần kinh (ANNs – Artificial neutral networks), máy hỗ trợ véc tơ (SVM – Support vector machine), cây phân loại và hồi quy (CART - Classification and regression trees), hồi quy tuyến tính (LR - Linear regression), hồi quy tuyến tính tổng quát (GENLIN - Generalized linear regression), tự động phát hiện tương tác Chi-squared (CHAID - Chi-square automatic interaction detector) và mô hình tổng hợp (Ensemble model) để dự đoán mức tiêu thụ năng lượng trong các căn hộ tòa nhà chung cư. Bộ dữ liệu để xây dựng mô hình gồm 200 mẫu được khảo sát ở nhiều chung cư tại TP. Hồ Chí Minh. Mô hình đơn có hiệu quả tốt nhất trong quá trình dự đoán là CART, trong khi đó mô hình được tổng hợp tốt nhất là CART + GENLIN. Từ khóa: ước tính; tòa nhà; tiêu thụ năng lượng; khai phá dữ liệu, trí tuệ nhân tạo.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here