
Production, characterization and biological evaluation of nanocapsules containing tricresol formalin and their comparison with the free form
Author(s) -
Jiames Nunes Barcellos,
Márcia da Silva Schmitz,
Michele Rorato Sagrillo,
Liana da Silva Fernandes
Publication year - 2021
Language(s) - English
Resource type - Journals
ISSN - 2411-2933
DOI - 10.31686/ijier.vol9.iss11.3556
Subject(s) - nanocapsules , formazan , viability assay , pharmacology , chemistry , mtt assay , in vitro , biomedical engineering , nanotechnology , materials science , biochemistry , nanoparticle , medicine
Ethnopharmacological relevance: Tricresol formalin is composed of 90% formaldehyde and 10% cresols, highly volatile, has action at a distance, has been used in endodontics since the 20th century, and it remains widely used in Brazil in dental treatments, in necrotic teeth and with periapical lesions. However, there is still controversy regarding the biological compatibility under the conditions of clinical use of this drug, as the studies carried out on this substance and its components are not consistent with its clinical use. Formaldehyde is reported as a potential cytotoxic substance, because when in direct contact with cells it is responsible for a cytogenotoxic response, so an alternative to increase stability and ensure the safe administration of this compound in direct contact with cells would be nanoencapsulation. The use of nanomaterials provides numerous advantages, as the main interests are increased solubility and drug release control. Study objective: This study aimed to produce and characterize nanocapsules containing tricresol formalin as active, evaluating and comparing the in vitro cytotoxic effect of free and nanostructured forms.Materials and methods: a nanoparticle was produced, optimization of the preparation method and characterization of nanocapsules containing tricresol formalin. Were performed antimicrobiological tests, tests for cell viability through the tetrazolium method assay (MTT), free radical production, double strand DNA damage, and nitric oxide production. Results: The formulation used did not show toxic behavior against human peripheral blood mononuclear cells and showed a significant reduction in the toxicity of tricresol formalin in human fibroblast cells. The nanostructures showed values similar to the free form for antimicrobial activity. The nanoparticles showed mean particle size of 192.3 ± 2.5 nm, PDI of 0.101 ± 0.013, zeta potencial of -17.7 ± 2.8 mV, and pH of 5.48 ± 0.3. Conclusion: Thus, it is evident that nanocapsules containing tricresol formalin can become a safer alternative for use within endodontics.