
STRESS-STRAIN STATE OF PREFABRICATED MONOLITHIC BENDING ELEMENT AT GRADUAL INSTALLATION AND LOADING
Author(s) -
A. A. Koyankin,
V. M. Mitasov,
I. Ya. Petuhova,
T. A. Tshay
Publication year - 2019
Publication title -
vestnik tomskogo gosudarstvennogo arhitekturno-stroitelʹnogo universiteta
Language(s) - English
Resource type - Journals
eISSN - 2310-0044
pISSN - 1607-1859
DOI - 10.31675/1607-1859-2019-21-6-101-114
Subject(s) - precast concrete , structural engineering , load bearing , stress (linguistics) , stress–strain curve , bending , bearing capacity , materials science , finite element method , composite material , engineering , philosophy , linguistics
The stress-strain state of the prefabricated monolithic element depends on its gradual installation and loading. Regulatory documents of the Russian Federation indicate the need to calculate precast-monolithic structures for two stages of construction: before and after the specified monolithic concrete strength acquired. In this case, the stress-strain state that appeared in the prefabricated elements before the specified monolithic concrete strength should be considered. However, the construction and loading stages at issue and accumulation of stresses and strains are not disclosed in the regulatory documents. In addition, this problem is insufficiently studied. In this regard, the aim of this paper is to study the pre-loading effect of the prefabricated element on its stress-strain state and the load-bearing capacity. During the experiments, a pre-loaded prefabricated part is studied. The obtained results are compared with instantaneously loaded test samples. Other parameters of the experimental models are completely identical. In all, 5 samples are tested (step-by-step loading of 3 samples and instantaneous loading of 2 samples). It is shown that pre-loading of the preloaded prefabricated part significantly affects the stress-strain state of the whole structure and its total load-bearing capacity.