
Calculation of gas flow rates in concentrated fire vortices
Author(s) -
А. Г. Обухов,
Lev Maksimov
Publication year - 2019
Publication title -
izvestiâ vysših učebnyh zavedenij. neftʹ i gaz
Language(s) - English
Resource type - Journals
ISSN - 0445-0108
DOI - 10.31660/0445-0108-2019-5-108-114
Subject(s) - vortex , mechanics , compressibility , flow (mathematics) , boundary value problem , compressible flow , physics , navier–stokes equations , mathematics , classical mechanics , mathematical analysis
The article presents the results of numerical simulation of the generation of free fire vortices in the laboratory without the use of special twisting devices. A. Yu. Varaksin, the corresponding member of the Russian Academy of Sciences, in his experimental studies has described the principal possibility of physical modeling of the occurrence of concentrated fire vortices. In the model of a compressible continuous medium for the complete system of Navier — Stokes equations, an initial-boundary value problem has been proposed that describes complex three-dimensional unsteady flows of a viscous compressible heat-conducting gas in ascending swirling heat flows. We has constructed approximate solutions of the complete Navier — Stokes system of equations and has determined velocity characteristics of threedimensional unsteady gas flows initiated by local heating of the underlying surface by nineteen heat sources, using explicit difference schemes and the proposed initial-boundary conditions.