
Study of physical and chemical properties of tellurium-containing middlings
Author(s) -
A. V. Nitsenko,
Н. М. Бурабаева,
Farkhat Tuleutay,
Р.С. Сейсембаев,
Xeniya Linnik,
M.N. Azlan
Publication year - 2020
Publication title -
kompleksnoe ispolʹzovanie mineralʹnogo syrʹâ
Language(s) - English
Resource type - Journals
eISSN - 2616-6445
pISSN - 2224-5243
DOI - 10.31643/2020/6445.36
Subject(s) - tellurium , scanning electron microscope , chemistry , copper , analytical chemistry (journal) , elemental analysis , selenium , amorphous solid , materials science , metallurgy , crystallography , inorganic chemistry , composite material , organic chemistry
The process experts are concerned in tellurium due to its various physical and chemical properties. The copper anode slime is the main industrial source of tellurium, after processing of that tellurium becomes marketable product and can be sold both in elemental form and tellurium-containing middling. Physical and chemical properties of the tellurium-containing middling of Kazakhmys Smelting LLP produced in 2018 have been studied in this paper. The following methods have been applied during the study: particle size distribution, X-ray phase, X-ray fluorescence and scanning electron probe microscopy. It was found that material is mainly represented by the large pieces of 0.2 mm in size, with moisture content of 15.57 %, bulk density of 0.8 g/cm3 without tapping and 0.88 g/cm3 with tapping, the angle friction - 33°. The elemental composition of the material was determined by X-ray fluorescence method as follows, wt. %: Cu – 33.327; Te – 21.863; Se – 0.766, O – 35.116; S – 5.045. X-ray phase analysis showed that material is mainly in the amorphous state, the following phases had been identified: Cu2.5SO4(OH)3·2H2O, Cu3(SO4)(OH)4, CuSO4(H2O)3. Tellurium-containing phases could not be detected due to strong amorphism. Hydrosulfate forms of copper in the form of flakes have been found on the surface of the middlings by electron probe microscopy. EDS analysis of individual areas showed that patina also contains small amounts of chlorine, selenium and up to 25 % tellurium, in addition to such elements as copper, sulfur and oxygen. Small amounts of sulfur, chromium, selenium and up to 45 % of oxygen has been found in the open area of material, that is specific for its oxidation.