
Synthesis and characterization of anticorrosion emulsion latexes for metal
Author(s) -
ElSayed Negim,
Lyazzat Bekbayeva,
Kymbat Omurbekova
Publication year - 2018
Publication title -
kompleksnoe ispolʹzovanie mineralʹnogo syrʹâ
Language(s) - English
Resource type - Journals
eISSN - 2616-6445
pISSN - 2224-5243
DOI - 10.31643/2018/6445.40
Subject(s) - copolymer , materials science , thermogravimetric analysis , glass transition , emulsion polymerization , polymer chemistry , polystyrene , ammonium persulfate , thermal stability , acrylate , polymerization , styrene , thermal decomposition , emulsion , chemical engineering , polymer , composite material , chemistry , organic chemistry , engineering
Copolymer emulsion latexes based on styrene: (St), and 2-ethylhexyl acrylate; (2- EHA), were prepared via emulsion polymerization with different compositions ratios (80:20 %, and 50:50 %). The polymerizations were carried out at 80 °C using ammonium persulfate (APS) as initiator technique system in presence of sodium dodecyl benzene sulfate (DBS) as surfactant. The copolymers lattices were characterized by FT-IR, 1HNMR, TGA, and DSC. Copolymer latexes were high solid content and used as binder in anticorrosive coating for metal. The presence of a new absorption peak in the infrared region of C-H stretching and C-H out of plane bending of polystyrene at 3027 and 696 cm-1 and the chemical shift of 1H NMR at 1.5-1.7 ppm due to presence of -CH2- in copolymer shows indicating that the polymerization has taken place. The thermogravimetric analysis (TGA) illustrated higher thermal stability that obtained by decomposition temperature. These copolymers have a single glass transition temperature indicating that these copolymers can form a homogenous phase. However, with increasing the ratio of 2-ethylhexyl acrylate in the copolymer, glass transition temperature increased. The obtained copolymers showed excellent adhesion properties on the metal. Also, the results showed that copolymer latex has good anti-corrosively, UV light stability, and direct application as metal anti-corrosive. However, increasing the ratio of 2-EHA enhanced anticorrosion properties of the metal.