
Cohomology of simple modules for sl3(k) in characteristic 3
Author(s) -
A.A. Ibrayeva
Publication year - 2021
Publication title -
ķaraġandy universitetìnìn̦ habaršysy. matematika seriâsy
Language(s) - English
Resource type - Journals
eISSN - 2663-5011
pISSN - 2518-7929
DOI - 10.31489/2021m3/36-43
Subject(s) - mathematics , simple (philosophy) , cohomology , group cohomology , pure mathematics , quotient , algebraically closed field , algebra over a field , lie algebra , simple module , philosophy , epistemology
In this paper we calculate cohomology of a classical Lie algebra of type A2 over an algebraically field k of characteristic p = 3 with coefficients in simple modules. To describe their structure we will consider them as modules over an algebraic group SL3(k). In the case of characteristic p = 3, there are only two peculiar simple modules: a simple that module isomorphic to the quotient module of the adjoint module by the center, and a one-dimensional trivial module. The results on the cohomology of simple nontrivial module are used for calculating the cohomology of the adjoint module. We also calculate cohomology of the simple quotient algebra Lie of A2 by the center.