A remark on elliptic differential equations on manifold
Author(s) -
Allaberen Ashyralyev,
Yaşar Sözen,
Fatih Hezenci
Publication year - 2020
Publication title -
bulletin of the karaganda university-mathematics
Language(s) - English
Resource type - Journals
eISSN - 2663-5011
pISSN - 2518-7929
DOI - 10.31489/2020m3/75-85
Subject(s) - mathematics , mathematical analysis , boundary value problem , manifold (fluid mechanics) , type (biology) , neumann boundary condition , boundary (topology) , elliptic boundary value problem , euclidean space , pure mathematics , mixed boundary condition , mechanical engineering , ecology , engineering , biology
For elliptic boundary value problems of nonlocal type in Euclidean space, the well posedness has been studied by several authors and it has been well understood. On the other hand, such kind of problems on manifolds have not been studied yet. Present article considers differential equations on smooth closed manifolds. It establishes the well posedness of nonlocal boundary value problems of elliptic type, namely Neumann-Bitsadze-Samarskii type nonlocal boundary value problem on manifolds and also DirichletBitsadze-Samarskii type nonlocal boundary value problem on manifolds, in H¨older spaces. In addition, in various H¨older norms, it establishes new coercivity inequalities for solutions of such elliptic nonlocal type boundary value problems on smooth manifolds.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom