z-logo
open-access-imgOpen Access
Nonlocal boundary value problem with Poissons operator on a rectangle and its difference interpretation
Author(s) -
Dovlet M. Dovletov
Publication year - 2020
Publication title -
ķaraġandy universitetìnìn̦ habaršysy. matematika seriâsy
Language(s) - English
Resource type - Journals
eISSN - 2663-5011
pISSN - 2518-7929
DOI - 10.31489/2020m3/38-54
Subject(s) - mathematics , rectangle , boundary value problem , uniqueness , mathematical analysis , operator (biology) , a priori and a posteriori , differential equation , domain (mathematical analysis) , differential operator , value (mathematics) , interpretation (philosophy) , geometry , computer science , statistics , biochemistry , chemistry , philosophy , epistemology , repressor , transcription factor , gene , programming language
In the present paper, differential and difference variants of nonlocal boundary value problem (NLBVP) for Poisson’s equation in open rectangular domain are studied. The existence, uniqueness and a priori estimate of classical solution are established. The second order of accuracy difference scheme is presented. The applications with weighted integral condition are provided in differential and difference variants.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here